Frequently ordered laboratory tests
Glucose, blood
Adults: 70-99 mg/dl - Renal threshold: 180 mg/dl
- Critical values for hyperglycemia in adults are >400 mg/dL
- Critical values for hypoglycemia in adult males are <50 mg/dL and adult females are <40 mg/dL.
- Fasting blood glucose is performing on serum or plasma
Glucose, blood

Glucose increased by:
- Acromegaly
- Adenoma of pancreas
- Brain trauma
- Cushing’s syndrome
- Diabetes
- Eclampsia
- Hyperthyroidism
- Liver disease
- Malnutrition
- MI
- Obesity
- Pancreatitis
- Pheochromocytoma
- Stress (insulin resistance)

Drugs that increase blood glucose:
- Corticosteroids
- Diuretics
- Epinephrine
- Glucagon
- Nicotine

Glucose decreased by:
- Addison’s disease
- Exercise
- Hepatic necrosis
- Islet cell carcinoma
- Malabsorption
- Pancreatic cancer
- Pituitary hypofunction
- Post gastrectomy
- Sepsis
- Stress

Drugs that decrease blood glucose:
- Alcohol
- Amphetamines
- Beta-blockers
- Ginseng
- Glucosol (agestroemia speciosi L. etc)
- Gymnema Sylvestre ext.
- Insulin
- Momordica charantia (bitter melon)
Glucose, Urine

24 hour specimen:
When blood glucose levels exceed 180 mg/dL the glucose begins to spill over into the urine.

Urine Glucose

Increased by:
- Diabetes mellitus
- Cushing’s syndrome
- Severe stress
- trauma
- surgery

Decreased by:

Drugs that cause false negative test include:
- Ascorbic acid (Clinistix, Tes-Tape)
- Levodopa (Clinistix)
- Phenazopyridine (Clinistix, Tes-Tape)

- Infection
- Drug therapy
- Pregnancy
- Low renal threshold
Drugs that may increase levels:

- Aminosalicylic acid
- Cephalosporins
- Chloramphenicol
- Dextrothyroxine
- Diuretics (loop and thiazide)
- Estrogens
- Glucose infusions
- Isoniazid
- Levodopa
- Lithium
- Nafcillin
- Nalidixic acid
- Nicotinic acid (large doses)
HgA1C Glycosylated Hemoglobin

Normal adult 4 – 7 %
Good diabetic control 7% or less
Fair diabetic control 7.01% - 10%
Poor diabetic control 10.1% - 13% or more

- Glycosylated hemoglobin (GHb) is a test which provides an accurate 2-3 month index of average blood glucose levels.
- If the patient has had greatly fluctuating blood glucose levels (>50 mg/dl and >200 mg/dL) the test will reflect both highs and lows. In other words, a person in poor control may have relatively good GHb values when in fact the blood glucose control has been poor.
- Test is unaffected by recent food intake, exercise, stress of hypoglycemia.
Glycosylated Hemoglobin, cont’d

<table>
<thead>
<tr>
<th>Increased with:</th>
<th>Decreased with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newly diagnosed or poorly controlled diabetes</td>
<td>Hemolytic anemia (Sickle Cell) (caused by increased RBC turnover)</td>
</tr>
<tr>
<td>Impaired Glucose Tolerance</td>
<td>Chronic renal failure</td>
</tr>
<tr>
<td></td>
<td>Vitamin E supplementation</td>
</tr>
<tr>
<td>Pregnancy</td>
<td></td>
</tr>
<tr>
<td>Fe deficiency anemia</td>
<td></td>
</tr>
<tr>
<td>Hemodialysis</td>
<td></td>
</tr>
<tr>
<td>Thalassemia</td>
<td></td>
</tr>
</tbody>
</table>
Sodium, Serum

Adults: 136-145 mEq/L
- Sodium is the major cation in extracellular space
- Intracellular sodium is approximately 5mEq/L....
- Aldosterone and antidiuretic hormone help regulate sodium balance

Symptoms of hypernatremia:
- Dehydration thirst, agitation, restlessness, hyper-reflexes and seizures.

Symptoms of hyponatremia
- Muscle cramps, muscle twitching, headache, dizziness, lethargy, confusion, convulsions, stupor and coma. The changes in the central nervous system are due to fluid shifts from the extracellular spaces to the intracellular spaces, causing cells to swell.
- Elevated blood glucose levels give falsely low serum sodium values. Use this formula to correct serum sodium values. \(\text{Na} = \frac{\text{glucose} \times 2 + \text{Na}}{6} \)
Sodium, Serum, Cont’d

<table>
<thead>
<tr>
<th>Sodium Increased by</th>
<th>Sodium decreased by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive intake</td>
<td>Decreased intake</td>
</tr>
<tr>
<td>Dehydration</td>
<td>Severe diarrhea</td>
</tr>
<tr>
<td>Excessive sweating</td>
<td>Vomiting</td>
</tr>
<tr>
<td>Diabetes insipidus</td>
<td>Hyperglycemia</td>
</tr>
<tr>
<td>Hypercalcemic nephroopathy</td>
<td>Hyperproteinemia</td>
</tr>
<tr>
<td>Hypokalemic nephropathy</td>
<td>Addison’s disease</td>
</tr>
<tr>
<td>Cushing’s disease</td>
<td>Cirrhosis with ascites</td>
</tr>
<tr>
<td>Primary aldosteronism</td>
<td>Excessive non-electrolyte IVs</td>
</tr>
</tbody>
</table>

Drugs that may increase sodium
- methyldopa
- antibiotics
- corticosteroids
- oral contraceptive agents

Drugs that may decrease sodium
- diuretics
- vasopressin (ADH)
Potassium, serum

Adults: 3.5 - 5.0 mEq/L

- Potassium is the principle intracellular cation.
- The normal potassium levels within cells is approximately 150 mEq/L compared to 3.5 - 5.0 mEq/L in serum.
- The serum potassium concentration is related to renin-aldosterone mechanism, sodium reabsorption and acid-base balance.
- When acid-base balance is altered the serum potassium also changes. As the pH of the blood increases (becomes more alkalotic) the potassium shifts from the serum to the cells. As the pH of the blood decreases (becomes more acidic) the intracellular potassium shifts to the serum.
Potassium, serum cont’d

Symptoms of hypokalemia:
- Muscle weakness, cramps, hyporeflexia, paresthesias, decreased bowel motility, hypotension, cardiac arrhythmia, drowsiness, lethargy and coma. Serum potassium below 3.5 mEq/L is often seen with a serum pH above 7.45, decreased serum bicarbonate level and possibly elevated blood glucose.

Symptoms of hyperkalemia:
- Include confusion, irritability, nausea, vomiting, intestinal colic, paresthesia abdominal cramps and muscle paralysis.
Potassium, serum cont’d

<table>
<thead>
<tr>
<th>Potassium Increased by</th>
<th>Decreased by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal Failure</td>
<td>PCM</td>
</tr>
<tr>
<td>Excessive intake</td>
<td>Malabsorption</td>
</tr>
<tr>
<td>Cell damage:</td>
<td>Diarrhea</td>
</tr>
<tr>
<td>> burns</td>
<td>Severe vomiting</td>
</tr>
<tr>
<td>> surgery</td>
<td>Renal tubular acidosis</td>
</tr>
<tr>
<td>> crushing injuries</td>
<td>Diuretic therapy</td>
</tr>
<tr>
<td>> chemotherapy</td>
<td>Liver disease with ascites</td>
</tr>
<tr>
<td>Acidosis</td>
<td>Chronic stress</td>
</tr>
<tr>
<td>Addison’s disease</td>
<td>Chronic laxative abuse</td>
</tr>
<tr>
<td>Internal hemorrhage</td>
<td>Cushing's syndrome</td>
</tr>
<tr>
<td>Uncontrolled diabetes</td>
<td>IV fluids without adequate K+</td>
</tr>
</tbody>
</table>
Potassium, serum cont’d

<table>
<thead>
<tr>
<th>Drugs which may increase K+ levels</th>
<th>Drugs which may decrease K+ levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotics</td>
<td>Licorice</td>
</tr>
<tr>
<td>Antineoplastic drugs</td>
<td>NaCl</td>
</tr>
<tr>
<td>Captopril</td>
<td>Digoxin</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>Insulin</td>
</tr>
<tr>
<td>Histamine</td>
<td>Laxatives</td>
</tr>
<tr>
<td>Lithium</td>
<td>Aspirin</td>
</tr>
</tbody>
</table>
Chloride, Cont’d

Adult/Elderly: **90-110** mEq/L

- Chloride is the major extracellular anion.
- Chloride works with sodium to maintain serum osmolality.
- Absorption of chloride depends on sodium reabsorption and is regulated by aldosterone. Any changes in sodium reabsorption will secondarily impact the serum chloride level. In doing so, chloride affects water balance and osmolality.
- Hypochloremia is almost always seen with hyponatremia.
- Hyperchloremia is almost always seen with hypernatremia.
Chloride, Cont’d

Symptoms of hypochloremia:

- Hyperexcitability of the nervous system and muscles, shallow breathing, hypotension and tetany.
- As the chloride level drops, the bicarbonate reabsorption increases proportionately causing metabolic alkalosis. The abnormally high level of bicarbonate results in a shift of intercellular hydrogen out of the cell and potassium into the cell. This shift results in hypokalemia.
Chloride, Cont’d

Symptoms of hyperchloremia:

- Lethargy, weakness and deep breathing,
- As the chloride level increases, the bicarbonate reabsorption decreases proportionately, causing metabolic acidosis
Chloride, Cont’d

<table>
<thead>
<tr>
<th>Chloride Increased by</th>
<th>Decreased by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration</td>
<td>Overhydration</td>
</tr>
<tr>
<td>Excessive infusion of saline</td>
<td>Congestive heart failure</td>
</tr>
<tr>
<td>Cushing’s syndrome</td>
<td>Vomiting</td>
</tr>
<tr>
<td>Eclampsia</td>
<td>Addison’s disease</td>
</tr>
<tr>
<td>Anemia</td>
<td>Hypokalemia</td>
</tr>
<tr>
<td>Hypernatremia</td>
<td>Hyponatremia</td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>Diuretic therapy</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td>Metabolic alkalosis</td>
</tr>
<tr>
<td>Hyperventilation</td>
<td>Burns</td>
</tr>
<tr>
<td></td>
<td>Emphysema</td>
</tr>
</tbody>
</table>
Chloride, Cont’d

<table>
<thead>
<tr>
<th>Drugs that may increase chloride</th>
<th>Drugs that may decrease chloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisone</td>
<td>Aldosterone</td>
</tr>
<tr>
<td>Estrogen</td>
<td>Corticosteroids</td>
</tr>
<tr>
<td>Diuretics</td>
<td>Hydrocortisone</td>
</tr>
<tr>
<td>NSAIDS</td>
<td>Diuretics</td>
</tr>
</tbody>
</table>
Carbon Dioxide

23-30 mEq/l

- 95% of CO2 comes from bicarbonate (HCO₃⁻) which is regulated by the kidneys
- The remaining 5% comes from dissolved CO2 (Carbonic acid H₂CO₃) which is regulated by the lungs.
- These substances assist in maintaining the body's acid-base balance through its buffering system.
Carbon Dioxide, Cont’d

<table>
<thead>
<tr>
<th>CO₂ increased by</th>
<th>Decreased by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway obstruction</td>
<td>Acute renal failure</td>
</tr>
<tr>
<td>Alcoholism</td>
<td>Dehydration</td>
</tr>
<tr>
<td>Cushing's syndrome</td>
<td>Diabetic acidosis</td>
</tr>
<tr>
<td>Emphysema</td>
<td>Diarrhea (severe)</td>
</tr>
<tr>
<td>Fat embolism</td>
<td>Head trauma</td>
</tr>
<tr>
<td>Hypoventilation</td>
<td>High fever</td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td>Hyperventilation</td>
</tr>
<tr>
<td>Nasogastric suctioning</td>
<td>Malabsorption</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>Metabolic acidosis</td>
</tr>
<tr>
<td>Primary aldosteronism</td>
<td>Renal tubular acidosis</td>
</tr>
<tr>
<td>Pyloric obstruction</td>
<td>Respiratory alkalosis</td>
</tr>
<tr>
<td>Respiratory acidosis</td>
<td>Salicylate intoxication</td>
</tr>
<tr>
<td>Vomiting</td>
<td>Starvation</td>
</tr>
<tr>
<td></td>
<td>Uremia</td>
</tr>
</tbody>
</table>
Carbon Dioxide, Cont’d

<table>
<thead>
<tr>
<th>Drugs that may increase CO₂</th>
<th>Drugs that may decrease CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldosterone</td>
<td>Ammonium chloride</td>
</tr>
<tr>
<td>Antacids</td>
<td>Chlorothiazide diuretics</td>
</tr>
<tr>
<td>Barbituates</td>
<td>Methacillin</td>
</tr>
<tr>
<td>Cortisone</td>
<td>Salicylates</td>
</tr>
<tr>
<td>Licorice</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>Loop diuretics</td>
<td></td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td></td>
</tr>
<tr>
<td>Thiazide diuretics</td>
<td></td>
</tr>
</tbody>
</table>
Blood Urea Nitrogen (BUN)

Adults: 7-23 mg/dL

- The BUN level is directly related to the metabolic function of the liver and excretory function of the kidney.
- The BUN increases as the kidney's function declines. Slightly higher values of BUN seen in elderly patients are often the result of an inability to concentrate urine or dehydration.
Blood Urea Nitrogen (BUN) Cont’d

- The BUN is interpreted in conjunction with the creatinine test to assess kidney excretory function.
- A BUN > 100 mg/dL usually indicates serious kidney problems.
- In patients with both kidney disease and liver disease, the BUN may be elevated then return to normal. This is not a reflection of improved renal excretory function but rather an indication that the liver is unable to form urea. As the liver continues to decline, the blood ammonia levels will rise, while the BUN may remain normal or slightly elevated.
Blood Urea Nitrogen (BUN) Cont’d

<table>
<thead>
<tr>
<th>BUN Increased by</th>
<th>Decreased by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased Protein catabolism:</td>
<td>Severe liver damage:</td>
</tr>
<tr>
<td>Hemorrhage into GI</td>
<td>- drugs</td>
</tr>
<tr>
<td>Acute MI</td>
<td>- poisoning</td>
</tr>
<tr>
<td>Stress</td>
<td>- hepatitis</td>
</tr>
<tr>
<td>Starvation</td>
<td>Increased protein synthesis:</td>
</tr>
<tr>
<td>Diabetes</td>
<td>- Late pregnancy</td>
</tr>
<tr>
<td>Fever</td>
<td>- Infancy</td>
</tr>
<tr>
<td>Bums</td>
<td>- Acromegaly</td>
</tr>
<tr>
<td>Impaired renal function</td>
<td>Nephrotic syndrome</td>
</tr>
<tr>
<td>CHF</td>
<td>Impaired absorption</td>
</tr>
<tr>
<td>Urinary obstruction</td>
<td>- Celiac disease</td>
</tr>
<tr>
<td>Dehydration</td>
<td>Low protein, high CHO diet</td>
</tr>
<tr>
<td>Very high protein diet</td>
<td>Overhydration</td>
</tr>
</tbody>
</table>

- Very high protein diet
- Overhydration
Blood Urea Nitrogen (BUN) Cont’d

<table>
<thead>
<tr>
<th>Drugs that may increase BUN levels</th>
<th>Drugs that may decrease BUN levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allopurinol</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td></td>
</tr>
<tr>
<td>Furosemide</td>
<td></td>
</tr>
<tr>
<td>Guanethidine</td>
<td></td>
</tr>
<tr>
<td>Indomethacin</td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td></td>
</tr>
<tr>
<td>Methyldopa</td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td></td>
</tr>
<tr>
<td>Bacitracin</td>
<td></td>
</tr>
<tr>
<td>Carbamazepine</td>
<td></td>
</tr>
<tr>
<td>Neomycin</td>
<td></td>
</tr>
<tr>
<td>Penicillamine</td>
<td></td>
</tr>
<tr>
<td>Penicillamine</td>
<td></td>
</tr>
<tr>
<td>Propranolol</td>
<td></td>
</tr>
<tr>
<td>Spironolactone</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
</tr>
</tbody>
</table>
Creatinine

Adult males: 0.9 - 1.3 mg/dL;
Adult females: 0.6 - 1.1 mg/dL;

- Creatinine is a by-product of the metabolism of muscle creatine phosphate to form ATP.
- Critical values >4 mg/dL indicate serious impairment in renal function. However, a normal creatinine does not always mean unimpaired renal function.
- Unlike the BUN, creatinine is not affected by malnutrition or hepatic function.
Creatinine, Cont’d

Creatinine increased by:
- Acromegaly
- CHF
- Diabetic nephropathy
- Impaired renal function
- Nephritis
- Reduced renal blood flow:
 - Shock
 - Dehydration
 - Congestive heart failure
- Rapid muscle loss
- Rhabdomyolysis
- Surgery
- Trauma
- Urinary tract obstruction
- Uremia

Decreased by:
- Debilitation
- Muscular dystrophy

Drugs that may decrease Creatinine:
- Diuretics
- Marijuana
Creatinine, Cont’d

Drugs that may increase Creatinine:
- Cimetidine
- Aminoglycosides
- Cephalosporins
- Heavy metals chemotherapeutic agents
- Creatine supplementation
- Protein
- Pyruvate
- Testosterone
- Arginine
- Barbituates
- Corticosteroids
Creatinine Clearance

Adults < 40 yr:

Male: 90-139 mL/min
Female: 80-125 mL/min

Values decrease 6.5 mL/min/decade due to decline in glomerular filtration rate (GFR).

The creatinine clearance test is used to evaluate glomerular filtration rate in terms of milliliters of filtrate produced by kidneys per minute.

The creatinine clearance test is used to assess the ability of the glomeruli to act as a filter.
Creatinine Clearance, Cont’d

Creatinine Clearance = \(\frac{UV}{P} \)

- **U** = number of milligram per deciliter of creatinine excreted in urine over 24 hours
- **V** = volume of urine in milliliters per minute
- **P** = serum creatinine in milligrams per deciliter

- Conditions which impact the results include a decrease in blood present for filtration and an inability of the glomeruli to act as a filter. A decrease in blood present for filtration can be due to renal artery atherosclerosis, dehydration or shock. Diseases affecting the glomeruli include glomerulonephritis, acute tubular necrosis and other primary renal diseases.
Creatinine Clearance, Cont’d

Creatinine Clearance Increased by:
Exercise
Pregnancy

Drugs that may increase levels:
Aminoglycosides:
Gentamicin
Cimetidine
Heavy-metal chemotherapeutic agents:
- Cisplatin
Nephrotoxic drugs:
- Cephalosporins
- Cefoxitin

Decreased by:
Impaired kidney function
Renal artery atherosclerosis
Glomerulonephritis
Acute tubular necrosis
Dehydration
Congestive heart failure
Cirrhosis with ascites
Shock
Uric Acid

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>2.3 – 6.6 mg/dL</th>
<th>Male</th>
<th>3.6 – 8.5 mg/dL</th>
</tr>
</thead>
</table>

- The end product of purine metabolism during the formation and degradation of DNA and RNA, plus the metabolism of dietary purines.
- The test is used to evaluate gout, kidney failure, leukemia, and toxemia of pregnancy.
Uric Acid, Cont’d

<table>
<thead>
<tr>
<th>Uric Acid Increased by</th>
<th>Decreased by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute leukemia</td>
<td>Acromegaly</td>
</tr>
<tr>
<td>Alcoholism</td>
<td>Celiac disease</td>
</tr>
<tr>
<td>Anemia</td>
<td>Hodgkin’s disease</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>Liver disease</td>
</tr>
<tr>
<td>Dehydration</td>
<td>Neoplasms</td>
</tr>
<tr>
<td>Down syndrome</td>
<td>Renal tubular defects</td>
</tr>
<tr>
<td>Eclampsia</td>
<td>SIADH</td>
</tr>
<tr>
<td>Fasting</td>
<td>Wilson’s disease</td>
</tr>
<tr>
<td>Glomerulonephritis</td>
<td>Xanthinuria</td>
</tr>
<tr>
<td>Gouty arthritis</td>
<td></td>
</tr>
<tr>
<td>Hypothyroidism’</td>
<td></td>
</tr>
<tr>
<td>Hypoparathyroidism</td>
<td></td>
</tr>
<tr>
<td>Infectious mono</td>
<td></td>
</tr>
<tr>
<td>Lead poisoning</td>
<td></td>
</tr>
<tr>
<td>Lymphomas</td>
<td></td>
</tr>
<tr>
<td>Malnutrition</td>
<td></td>
</tr>
<tr>
<td>Neoplasms</td>
<td></td>
</tr>
<tr>
<td>Nephritis</td>
<td></td>
</tr>
<tr>
<td>Polycythemia vera</td>
<td></td>
</tr>
<tr>
<td>Radiation</td>
<td></td>
</tr>
<tr>
<td>Renal failure</td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td></td>
</tr>
<tr>
<td>Uremia</td>
<td></td>
</tr>
</tbody>
</table>
Phosphorus

2.7 – 4.5 mg/dl

- The main anion in intracellular fluid
- Functions in glucose and lipid metabolism, bone formation, and acid-base balance.
- Like calcium, it is controlled by parathyroid hormone. An excess of one causes the kidneys to excrete the other.
Phosphorus, Cont’d

<table>
<thead>
<tr>
<th>Phosphorus increased by</th>
<th>Decreased by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acromegaly</td>
<td>Antacid abuse</td>
</tr>
<tr>
<td>Addison’s disease</td>
<td>Carbohydrate loading</td>
</tr>
<tr>
<td>Bone tumors</td>
<td>Chronic alcoholism</td>
</tr>
<tr>
<td>Excessive intake of alkali</td>
<td>Diabetic acidosis</td>
</tr>
<tr>
<td>Healing fracture</td>
<td>Diuresis</td>
</tr>
<tr>
<td>Hypocalcemia</td>
<td>Hypercalcemia</td>
</tr>
<tr>
<td>Hypoparathyroidism</td>
<td>Hyperinsulinism</td>
</tr>
<tr>
<td>Massive blood transfusions</td>
<td>Hyperparathyroidism</td>
</tr>
<tr>
<td>Nephritis</td>
<td>Malabsorption</td>
</tr>
<tr>
<td>Prepuberty</td>
<td>Malnutrition</td>
</tr>
<tr>
<td>Renal failure</td>
<td>Osteomalacia</td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>Rickets</td>
</tr>
<tr>
<td>Uremia</td>
<td>Salicylate intoxication</td>
</tr>
<tr>
<td>Vitamin D intoxication</td>
<td>Vitamin D deficiency</td>
</tr>
</tbody>
</table>
Phosphorus, Cont’d

<table>
<thead>
<tr>
<th>Drugs that may increase Phosphorus</th>
<th>Drugs that may decrease phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heparin</td>
<td>Anabolic steroids</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Androgens</td>
</tr>
<tr>
<td>Methicillin sodium</td>
<td>Antacids</td>
</tr>
<tr>
<td>Phosphate enemas</td>
<td>Diuretics</td>
</tr>
<tr>
<td></td>
<td>Epinephrine</td>
</tr>
<tr>
<td></td>
<td>Glucagon</td>
</tr>
<tr>
<td></td>
<td>Glucose</td>
</tr>
<tr>
<td></td>
<td>Insulin</td>
</tr>
<tr>
<td></td>
<td>Mannitol</td>
</tr>
<tr>
<td></td>
<td>Salicylates</td>
</tr>
</tbody>
</table>
Calcium 8.6 – 10 mg/dL

- Serum calcium levels are used to evaluate parathyroid function and calcium metabolism.
- Critical values are <6 mg/dL possibly leading to tetany and >14 mg/dL possibly leading to coma.
- The total serum calcium value includes both ionized calcium and calcium bound to albumin. When the serum albumin is low, the serum calcium level will also be low.
- When the serum albumin is high the serum calcium level is elevated.
Calcium

Calcium Increased by

| Mesastic tumor to the bone |
| Hyperparathyroidism |
| Vitamin D intoxication |
| Sarcoidosis |
| Milk-alkali syndrome |
| Addison’s disease |
| Paget's disease of bone |
| Nonparathyroid PTH producing tumors (e.g., lung and renal carcinomas) |
| Acromegaly |

Decreased by

| Hypoparathyroidism |
| Renal failure |
| Rickets |
| Osteomalacia |
| Hyperphosphatemia secondary to renal failure |
| Renal failure |
| Vitamin D deficiency |
| Malabsorption |
| Pancreatitis |
Calcium

<table>
<thead>
<tr>
<th>Drugs that may increase levels</th>
<th>Drugs that may decrease levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium supplements</td>
<td>Barbituates</td>
</tr>
<tr>
<td>Anabolic steroids</td>
<td>Iron</td>
</tr>
<tr>
<td>Antacids</td>
<td>Magnesium</td>
</tr>
<tr>
<td>Thiazide diuretics</td>
<td>Aspirin</td>
</tr>
<tr>
<td>Parathyroid hormone (PTH)</td>
<td>Calcitonin</td>
</tr>
<tr>
<td>Thyroid hormone</td>
<td>Corticosteroids</td>
</tr>
<tr>
<td>Vitamins A and D</td>
<td>Heparin</td>
</tr>
<tr>
<td></td>
<td>Laxatives</td>
</tr>
<tr>
<td></td>
<td>Loop diuretics</td>
</tr>
</tbody>
</table>
Cholesterol, Total

Adult: Total Cholesterol <200 mg/dL
Adult: LDL - 60-160 mg/dl (other labs 60-130)
Adult: HDL - Male >45 mg
Female > 55 mg
Adult: VLDL - 25% - 50%

- Cholesterol can be synthesized from acetyl coenzyme A in many tissues in the body.
- Low levels of total cholesterol are associated with malnutrition. In elderly patients/residents a total cholesterol level <160 mg/dL is a risk factor for skin breakdown when other risk factors are present.
- Can be used as a screening tool to identify individuals at risk for developing pressure ulcers.
- Low levels may also indicate severe liver disease or malabsorption syndromes.
Cholesterol, Total

<table>
<thead>
<tr>
<th>Cholesterol Increased by:</th>
<th>Decreased by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>Malabsorption</td>
</tr>
<tr>
<td>High calorie diet</td>
<td>PCM</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>Hyperthyroidism</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Penicillous aneniia</td>
</tr>
<tr>
<td>Nephrotic syndrome</td>
<td>Hemolytic anemia</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Sepsis</td>
</tr>
<tr>
<td>Stress</td>
<td>Stress</td>
</tr>
<tr>
<td>Biliary cirrhosis</td>
<td>Liver disease</td>
</tr>
<tr>
<td></td>
<td>AIDS</td>
</tr>
</tbody>
</table>
Cholesterol, Total

<table>
<thead>
<tr>
<th>Drugs that may increase cholesterol</th>
<th>Drugs that may decrease cholesterol</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTH</td>
<td>Allupurinol</td>
</tr>
<tr>
<td>Anabolic steroids</td>
<td>Androgens</td>
</tr>
<tr>
<td>Beta blockers</td>
<td>Bile-salt binding agents</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>Cytomel</td>
</tr>
<tr>
<td>Oral contraceptive agents</td>
<td>Niacin</td>
</tr>
<tr>
<td>Dilantin</td>
<td>Mevacor</td>
</tr>
<tr>
<td>Thiazide diuretics</td>
<td>Neomycin</td>
</tr>
</tbody>
</table>
Triglycerides

Adult: Males 40-100 mg/dl
 Females 35-100 mg/dl

Triglycerides increased by:
- MI
- High (excessive) calorie intake
- High CHO diet or High Fat Diet
- Poorly controlled diabetes
- Nephrotic syndrome
- Alcoholic cirrhosis
- Alcohol

Drugs that may increase levels:
- Cholestyramine
- Estrogen
- Oral contraceptive agents

Decreased by:
- Malabsorption
- PCM
- Hyperthyroidism
- AIDS

Drugs that may decreased levels:
- Ascorbic acid
- Clofibrate
- Cholesterol
Protein, Total

Adults: 6.0 - 8.0 gm/dL

- Total protein is a measure of the albumin and globulin in the blood
- It is of little value as a sensitive index of protein intake and protein status.

Total Protein increased by:
Dehydration

Decreased by:
- PCM
- Fluid overload
- Hepatic diseases
- Severe infection
- AIDS
- Protein-losing nephropathies’
- Third-space losses:
 - ascites
 - burns
- PCM
- Lupus
Albumin

Adults: 4.0 - 6.0 gm/dL (labs vary)

Degree of depletion

Mild: 3.0-3.5, gm/dL *moderate*: 2.1-3.0 gm/dL *severe*: <2.1 gm/dL

- Albumin is synthesized in the liver at a rate of 8-14 grams/day. It makes up approximately 60% of the total protein.
- Albumin provides approximately 80% of colloidal osmotic pressure of the
- Albumin also serves as a carrier of metals, ions, fatty acids, amino acids, metabolites, bilirubin, enzymes, hormones and drugs.
- Albumin level is dependent upon hepatocyte function. With age and declining liver function the liver can lose its ability to synthesize albumin.
- Because the half-life of albumin is 12-21 days, significant changes in liver function specific to albumin synthesis may go undetected until after that point.
- Severely malnourished individuals have greatly decreased levels of serum albumin. *However, albumin is a poor indicator of early malnutrition because of its long half-life.*
- When albumin levels are low the serum calcium level is also low.
- When the serum albumin is elevated the serum calcium is elevated.
Albumin, Cont’d

Albumin Increased by:
- Dehydration

Drugs that may increase levels:
- Anabolic steroids
- Androgens
- Corticosteroids
- Insulin
- Progesterone

Drugs that may decrease levels:
- Estrogens
- Hepatotoxic drugs
- Oral contraceptive agents

Albumin Decreased by:
- Overhydration
- Decreased absorption:
 - pancreatic insufficiency
 - Malabsorption
- Inadequate intake
- Impaired synthesis:
 - CHF
 - Cirrhosis
 - Acute stress
- Increased need:
 - Hyperthyroidism
 - Pregnancy

Albumin decreased by
- Increased loss:
 - Edema
 - Ascites
 - Burns
 - Pressure ulcers
 - Hemorrhage
 - Nephrotic syndrome
 - Crohn’s disease
 - Sprue
 - Whipple’s disease
 - AIDS
Bilirubin, Total

Total: 0.1 - 1.0 mg/dL
Direct: (conjugated) .01-.4 mg/dL
Indirect: (unconjugated) I - 1.0 mg/dL
Normally 70-85% of total bilirubin is conjugated.

- Metabo@m: Breakdown of RBC in reticuloendothelial system (macrophages-) Hemoglobin released from RBCs & broken down to heme & globin.
- Heme → bihverdin → bilirubin
- Bifirubin is conjugated in the liver with a glucuronide
- After conjugation, bilirubin excreted into intrahepatic canaculi → then hepatic ducts → bile duct → bowel
- Jaundice Occurs when total serum bilirubin exceeds 2.5 mg/dl
- Once jaundice occurs: Is it direct or indirect? (Conjugated or unconjugated?)
 - Liver dysfunction → unconjugated biliribin
 - Bile duct obstruction → conjugated bilirubi
 - Newborn jaundice occurs when immature liver does not have enough conjugating enzyme
Lactic Dehydrogenase (LDH)

Adult/Elderly: 110-210 U/L

Isoenzymes in adult/elderly:

LDH-1: 17%-27% heart & blood vessels
LDH-2: 27% -37% reticuloendothelial system
LDH-3: 18% - 25% lungs
LDH-4: 3%- 8% kidney, placenta, pancreas
LDH-5: 00/o - 5% liver and striated muscle
Lactic Dehydrogenase (LDH), Cont’d

- Lactic dehydrogenase (LDH) is an enzyme found in heart, liver, skeletal muscle, brain, red blood cells and lung cells.
- It rises within 24 to 72 hours after a myocardial infarction, peaks in 3 to 4 days and returns to normal in about 14 days.
- Lactic dehydrogenase is used with creatinine phosphokinase MB isoenzyme and aspartate ammotransferase to diagnose a myocardial infarction.
- LDH-2 levels are normally higher than the other isoenzymes. When LDH-1 is elevated above LDH-2 it suggests a possible myocardial infarction. If the laboratory only assesses for LDH-1 look for a level greater than 40% to suggest a myocardial infarction.
Lactic Dehydrogenase (LDH), Cont’d

LDH Increased by:
- Myocardial Actions pulmonary infarction, hepatic diseases, hemolytic anemias, skeletal muscle disease and injury, renal parenchymal diseases, intestinal ischemia infarction, cerebrovascular accident, neoplastic states, infectious mononucleosis, heat stroke, pancreatitis, collagen diseases, fracture, muscular dystrophy, shock, hypotension

Drugs that may increase levels:
- Alcohol anesthetics, aspirin, clofibrate, fluorides, mithramycin, narcotics, procainamide
Creatinine Phosphokinase (CPK)

Total CPK
Adult/Elderly:
- Male: 12 - 17 U/mL
- Female: 10 - 55 U/mL

Isoenzymes
- CPK-MM - 100% skeletal muscle
- CPK-MB - 0% specific for myocardial cells
- CPK-BB - 0% brain & lung
Creatinine Phosphokinase (CPK), Cont’d

- Creatinine phosphokinase (CPK) is an enzyme found in the heart, muscle, skeletal muscle and brain. Elevations in serum creatinine phosphokinase are always due to damaged muscle cells. The CPK levels often rise within 6 hours after trauma, peak at 18 hours and return to normal in 2 to 3 days if no additional injury occurs.

- Elevations in creatinine phosphokinase are often associated with a myocardial infarction. The CPK-MB appears to be specific for myocardial cells. The CPK-MB levels rise 3 to 6 hours after a myocardial infarction, peak at 12 to 24 hours and return to normal in 12 to 48 hours. If additional myocardial damage occurs, the CPK-MB will begin to rise again. CPK-MB levels usually do not rise with chest pain caused by angina, pulmonary embolism or congestive heart failure.

- Elevations in the CPK-BB are associated with a cerebrovascular accident or pulmonary infarction.

- When the CPK level increases due to an elevation in CPK-MM it is likely due to injury or stress to the skeletal muscle.
Creatinine Phosphokinase (CPK), Cont’d

Creatinine Phosphokinase
Increased by:
Acute myocardial infarction
Acute cerebrovascular disease
Electric shock
Convulsions
Muscular dystrophy
Delirium tremens
Chronic alcoholism
Polymyositis
Hypokalemia
Central nervous system trauma
Pulmonary infarction
Dermatomyositis

CPK-BB isoenzyme
Increased by:
Pulmonary infarction
Electroconvulsive therapy
Brain injury
Cerebrovascular accident (stroke)
Shock
Adenocarcinoma
Intestinal ischemia
Pulmonary embolism
Subarachnoid hemorrhage
Seizures
Brain cancer
Troponins

Cardiac troponin T (cTnT) < 0.2 ng/mL
Cardiac troponin I (cTnI) < 0.03 ng/mL
- New biochemical markers for heart disease
- They become elevated quicker and stay elevated longer than CPK-MB
- Increased levels = myocardial injury or myocardial infarction
- Severe skeletal muscle may cause false elevation of cTnT.
Lymphocytes (20-40%)

- Lymphocytes fight chronic bacterial infections and acute viral infections.
- Lymphocytes are either T-cells or B-cells.
- T-cells are primarily involved with cellular type immune reaction i.e. fungal and viral infections and transplant rejection. The T-cell secretions stimulate the B-cell response.
- B-cells participate in antibody production or humoral immunity. When the humoral immunity is activated the B-cells specific to the antigen differentiate into plasma or memory cells. These cells synthesize and release antibodies or immunoglobulins. The antibody binds to the antigen and inactivates it.
Lymphocytes (20-40%), Cont’d

Lymphocytes Increased by:
(lymphocytosis):
- Chronic bacterial infection
- Viral infection
 - Mumps
 - Rubella
- Lymphocytic leukemia
- Multiple myeloma
- Infectious mononucleosis
- Radiation
- Infectious hepatitis

Lymphocytes Decreased by:
(lymphocytopenia):
- Leukemia
- Sepsis
- Immunodeficiency diseases
- Lupus erythematosus
- Later stages of HIV

Drugs that may decrease levels:
- Andrenocorticosteroids
- Antineoplastic
- Radiation therapy
Folate

5-20 µg/ng

- Folate levels are used to evaluate hemolytic disorders and to detect megaloblastic anemias.
- Elevated levels of folate are often seen in pernicious anemia.

Folate Increased by:
- Penicicious anemia
- Vegetarianism

Decreased by:
- Megaloblastic anemia
- Hemolytic anemia
- PCM
- Malabsorption syndromes
- Cancer
- Liver Disease
- Alcoholism

Drugs that may decrease folate levels:
- Alcohol, aminopterin, aminosalicylic acid (PAS), ampicillin, antimalarials, chloramphenicol, erythromycin, estrogens, methotrexate, oral contraceptives, penicillin, phenobarbital, phenytoin, tetracycline
Vitamin B12

205-876 pg/mL
Deficient: <140 pg/mL

> Testing for B12 along with folic acid is used to test macrocytic anemia.

<table>
<thead>
<tr>
<th>B12 increased by:</th>
<th>B12 decreased by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD</td>
<td>Alcoholic hepatitis</td>
</tr>
<tr>
<td>CHF</td>
<td>Aplastic anemia</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Cancer</td>
</tr>
<tr>
<td>Leukemia</td>
<td>Diet deficient in folic acid</td>
</tr>
<tr>
<td>Leukocytosis</td>
<td>Hemodialysis</td>
</tr>
<tr>
<td>Liver disease</td>
<td>Hypothyroidism</td>
</tr>
<tr>
<td>Liver metastasis</td>
<td>Inflammatory bowel disease</td>
</tr>
<tr>
<td>Obesity</td>
<td>Malabsorption</td>
</tr>
<tr>
<td>Uremia</td>
<td>Malnutrition</td>
</tr>
<tr>
<td></td>
<td>Parasites</td>
</tr>
<tr>
<td></td>
<td>Pernicious anemia</td>
</tr>
<tr>
<td></td>
<td>Pregnancy</td>
</tr>
<tr>
<td></td>
<td>Smoking</td>
</tr>
<tr>
<td></td>
<td>Vegetarianism</td>
</tr>
</tbody>
</table>
Vitamin B12, Cont’d

Drugs that may increase B12
- Anticonvulsants
- Estrogens
- Vitamins A & C
- Anticonvulsants

Drugs that may decrease B12
- Aspirin
- Alcohol
- Antineoplastic agents
- Diuretics
- Oral hypoglycemics
- Sedatives
- High doses of Vitamin C
C-Reactive Protein

Adults: <0.8 mg/dL

- C-reactive protein (CRP) is an acute-phase protein which increases in infectious diseases and inflammatory disorders. It is an abnormal protein synthesized by the liver during an acute inflammatory process. An increase in CRP is associated with decreased levels of albumin and pre-albumin. A positive test indicates an acute inflammatory reaction however, it does not indicate the cause of the reaction. Antigens, immune complexes, bacteria, fungi and trauma can initiate the synthesis of CRP.

- This test is also used to monitor patients with a myocardial infarction. The level of CRP follows a similar pattern to creatine kinase MB isoenzyme, however the peak occurs one to three days later. If CRP levels do not return to less than 0.8 mg/dL, this suggests damage to heart tissue. Levels are not elevated with angina pectoris.
C-Reactive Protein, Cont’d

- CRP can be used postoperatively to identify wound infections. Generally, CRP increases four to six hours after surgery and will return to <0.8 mg/dL in three days. Elevated levels suggest complications.

CRP Increased by:
Acute rheumatic fever, Rheumatoid arthritis, Acute myocardial infarction, Postoperative wound infections, Pulmonary Actions Kidney or bone marrow transplant rejection, Malignant diseases, Bacterial infections (tuberculosis,), Viral infections, Crohn’s disease, Reiter's syndrome, Vasculitis syndromes, Lupus erythematosus, Tissue necrosis or trauma

Drugs that may increase CRP levels:
oral contraceptives

Drugs that may decrease levels:
nonsteroidal anti-inflammatories
salicylates
steroids
Pre-albumin

Adults: 19-43 mg/dl
 Deficiency: mild: 10-15 mg/dl
 moderate: 5-10 mg/dl
 severe: <5 mg/dl

- Pre-albumin (PAB) is in a class of proteins having rapid turnover with short half-lives (2-3 days). Also called transthyretin and thyroxine-binding pre-albumin.
- PAB is a transport protein synthesized by the liver and transported in serum as a complex of retinol-binding protein and vitamin A.
- PAB is a sensitive indicator of change affecting protein synthesis and catabolism. Frequently ordered to monitor TPN.
- Levels are reduced in hepatobiliary disease because of impaired synthesis.
- Serum PAB increases when more than 60% of Basal Energy Expenditure (BEE) needs are met and decreases when less than 45% are met or when there is no oral intake.
- A reasonable goal of a reseeding program is to increase serum PAB by at least 2.0-3.0 mg/dL in one week.
Pre-albumin, Cont’d

<table>
<thead>
<tr>
<th>PAB Increased by:</th>
<th>Decreased by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration</td>
<td>Malnutrition</td>
</tr>
<tr>
<td>Hodgkin’s disease</td>
<td>Liver damage</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>Inflammation</td>
</tr>
<tr>
<td>Nephrotic syndrome</td>
<td>Post-surgery</td>
</tr>
<tr>
<td></td>
<td>Bums</td>
</tr>
<tr>
<td></td>
<td>Overhydration</td>
</tr>
<tr>
<td></td>
<td>Zinc deficiency</td>
</tr>
</tbody>
</table>
Ferritin

Males: 12-300 ng/ml
Females: 10-150 ng/ml

- Ferritin is one of the major iron storage proteins.
- Levels of ferritin in the upper ranges are believed to correlate to increased risk for cardiovascular disease.
Ferritin, Cont’d

Ferritin Increased by:
Hemochromatosis
Hemosiderosis
Megaloblastic anemia
Hemolytic anemia
Alcoholic/inflammatory liver disease
Hodgkin’s disease
Breast cancer

Decreased by:
Iron deficiency anemia
Severe protein deficiency
Hemodialysis
Retinol-Binding Protein

2.6 – 7.6 mg/dl

- A low molecular weight protein that responds to both protein and calorie restrictions.
- More affected by energy restriction than protein deficiency.
- Not affected by the acute inflammatory response like pre-albumin, albumin, or C-reactive protein.
- RBP is a more reliable indicator of nutritional status following surgery or injury. RBP has a 10 hour half life and appears to be a better indicator of both short term and long term changes in protein status than albumin, pre-albumin or transferrin.
- RBP is not a reliable indicator of protein status in advanced chronic renal disease or in advanced liver disorders.
Insulin-like Growth Factor (IGF-1) [Somatomedin C]

42-110 ng/ml

- Levels are dependent on levels of GH.
- Non-pituitary causes of reduced levels include protein-calorie malnutrition, severe chronic illness, liver disease, and hypothyroidism.
- Restoration is more dependent on protein than on energy. (In contrast, Prealbumin is more dependent on energy than on protein.)
- More sensitive and specific than albumin, pre-albumin, transferrf4 or retinol-binding protein.
Magnesium

1.3 – 2.1 mEq/L

- Most magnesium exists within cells. Half is in bone
- Most is bound to ATP, making this electrolyte important in all metabolic processes
- Neuromuscular tissue depends on magnesium, and it is especially important to monitor magnesium levels in cardiac patients.

Increased by: Renal insufficiency, diabetes, Addison’s disease, Hypothyroidism, Magnesium containing antacids

Decreased by: Malnutrition, malabsorption, Hypoparathyroidism, Renal disease, Diabetic acidosis, stress, alcohol, diuretics, antibiotics

Symptoms of deficiency: apathy, forgetfulness, insomnia, depression, cardiac arrhythmia, muscle spasms, twitching, a tendency to startle easily
Magnesium, Cont’d

- **Symptoms of excess**: lethargy, flushing, hypotension, respiratory depression, bradycardia
- Most frequently observed abnormal analyte in pediatric patients
- 75% of diabetic patients are deficient
- 30% of patients in intensive care have low serum levels
- Hypomagnesemia is a serious risk factor for hypertension, cardiac arrhythmia stroke & heart failure
Lipid Panel, Cont’d

<table>
<thead>
<tr>
<th>HDL Increased by:</th>
<th>HDL Decreased by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequent exercise</td>
<td>High alcohol intake</td>
</tr>
<tr>
<td>Liver disease</td>
<td>Smoking</td>
</tr>
<tr>
<td>Moderate alcohol intake</td>
<td>AIDS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LDL & VLDL Increased by:</th>
<th>LDL & VLDL Decreased by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive calories</td>
<td>Malnutrition</td>
</tr>
<tr>
<td>High saturated fat diet</td>
<td>Malabsorption</td>
</tr>
</tbody>
</table>

Drugs that may increase both IML & LDL:
Aspirin, oral contraceptive agents, steroids, sulfonamides
Homocysteine

7-22 μmol/L

- Elevated levels are associated with an increased risk for heart disease that is independent of lipid levels.
- Homocysteine is an intermediate metabolite of the methionine pathway. When methionine is released from dietary protein it condenses with adenosine triphosphate (ATP) to form S-adenosylmethionine (SAM). SAM acts as a methyl donor and homocysteine is formed. Homocysteine can either be remethylated to form methionine or catabolized in the transsulfuration pathway. The remethylation of homocysteine to methionine requires both vitamin B12 and folic acid. When B12 is deficient in the diet, the folic acid becomes trapped in an unusable form as methyltetrahydrofolate. Megaloblastic anemia results. Large doses of folic acid can override the pathway and mask a B12 deficiency.
Homocysteine, Cont’d

- Serum homocysteine will rise when there is a B12 and/or a folic acid deficiency.
- The threshold for rising levels of homocysteine appears to be serum folate < 12.5 nmol/L and/or serum B12 < 225 pmol/L. The etiology of the disease process is unclear. Also, elevated levels of homocysteine are associated with risk for end stage renal failure. Normal levels and "at risk" levels are not consistent in the research literature and remain under research investigation.
Homocysteine, Cont’d

Increased levels of Homocysteine
Associated with:
- Renal failure
- Folate deficiency
- B12 deficiency
- CHD
- Smoking

Drugs that may increase levels:
- Methotrexate
- Dilantin
- Nitrous oxide
Vitamin K

Deficiency:
- Prolonged prothrombin time
- Small hemorrhagic spots
- Impaired bone formation
Protein C

70% - 140%

- A fibrin inhibitor that prevents clotting from occurring indiscriminately. It is produced by the liver, vitamin K is required for its production. Test is done to evaluate patients with severe thrombosis.

- Values decreased: cirrhosis, vitamin K deficiency, anticoagulant drugs.
Protein S

70%-140%

- A cofactor which enhances the anticoagulant effect of Protein C
- Produced in the liver.
- Vitamin K required for production.
Zinc

- Deficiency is widespread.
- Diuretics can lead to deficiency.
- Elderly subjects have high incidence of deficiency.